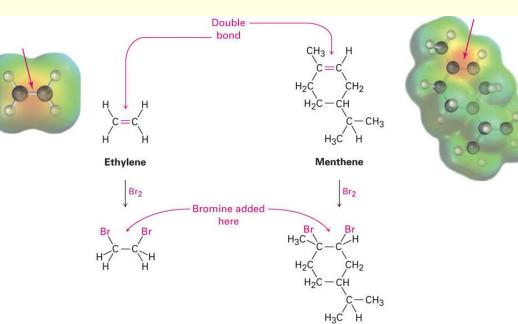
3. Organic Compounds: Alkanes and Their Stereochemistry

Based on McMurry's Organic Chemistry, 7th edition

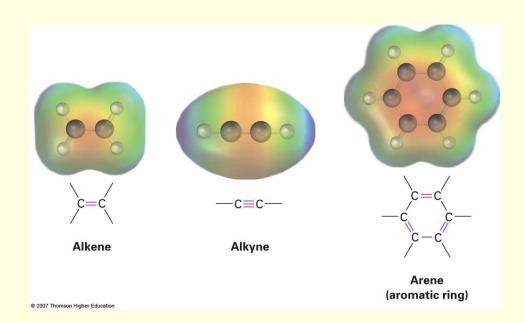
Why this Chapter

- Alkanes are unreactive, but provide useful vehicle to introduce important ideas about organic compounds
- Alkanes will be used to discuss basic approaches to naming organic compounds
- We will take an initial look at 3-D aspects of molecules

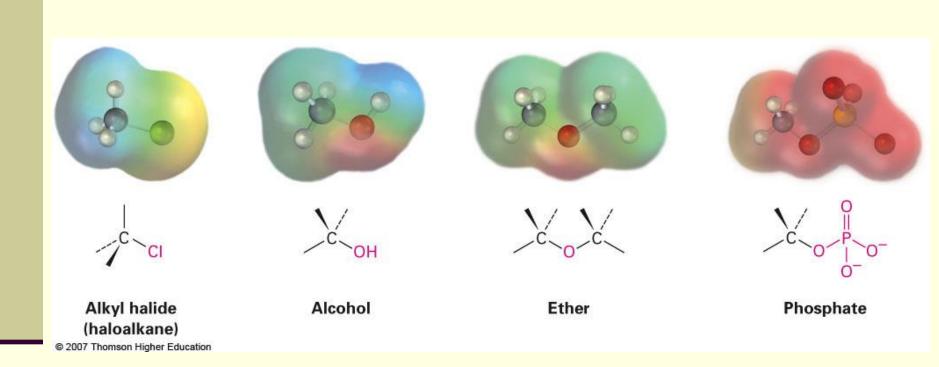

3.1 Functional Groups

Functional group -

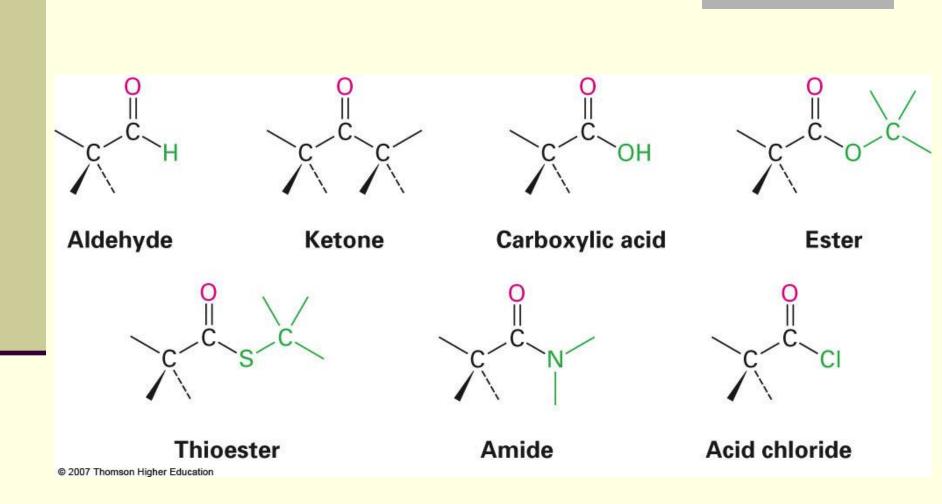
collection of atoms at a site that have a characteristic behavior in all molecules where it occurs


The group reacts in a typical way, generally independent of the rest of the molecule

For example, the double bonds in simple and complex alkenes react with bromine in the same way



Functional Groups with Multiple Carbon–Carbon Bonds


- Alkenes have a C-C double bond
- Alkynes have a C-C triple bond
- Arenes have special bonds that are represented as alternating single and double C-C bonds in a sixmembered ring

Functional Groups with Carbon Singly Bonded to an Electronegative Atom

Groups with a Carbon–Oxygen Double Bond (Carbonyl Groups)

Table 3.1 Structures of Some Common Functional Groups				
Name	Structure*	Name ending	Example	
Alkene (double bo	(and) $c = c$	-ene	H ₂ C=CH ₂ Ethene	
Alkyne (triple bon	-C≡C-	-yne	HC≡CH Ethyne	
Arene (aromatic r	ring)	None	Benzene	
Halide	(X = F, CI, Br, I)	None	CH ₃ Cl Chloromethane	
Alcohol	C_OH	-ol	CH ₃ OH Methanol	
Ether	C C	ether	CH ₃ OCH ₃ Dimethyl ether	

Table 3.1 S	Table 3.1 Structures of Some Common Functional Groups (continued)				
Name	Structure*	Name ending	Example		
Monophosph	nate	phosphate	CH ₃ OPO ₃ 2- Methyl phosphate		
Amine	C N:	-amine	CH ₃ NH ₂ Methylamine		
Imine (Schiff base)		None	NH CH ₃ CCH ₃ Acetone imine		
Nitrile	-C≡N	-nitrile	CH ₃ C ≡N Ethanenitrile		
Nitro		None	CH ₃ NO ₂ Nitromethane		
Thiol	C SH	-thiol	CH ₃ SH Methanethiol		

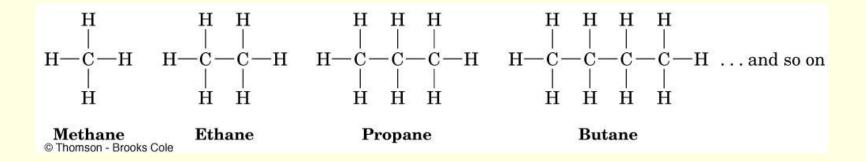

*The bonds whose connections aren't specified are assumed to be attached to carbon or hydrogen atoms in the rest of the molecule.

Table 3.1 Structures of Some Common Functional Groups (continued)			
Name	Structure*	Name ending	Example
Sulfide	C S C	sulfide	CH ₃ SCH ₃ Dimethyl sulfide
Disulfide	C-S-S-C	disulfide	CH ₃ SSCH ₃ Dimethyl disulfide
Carbonyl	O L C		
Aldehyde	O U U H	-al	O CH ₃ CH Ethanal
Ketone		-one	CH ₃ CCH ₃ Propanone
Carboxylic acid	С-С-ОН	-oic acid	O II CH ₃ COH Ethanoic acid
© 2007 Thomson Higher Education			

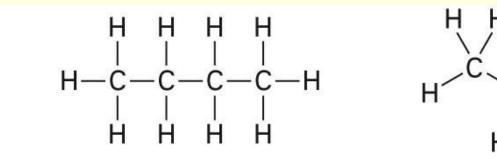
Name	Structure*	Name ending	Example
Ester		, -oate	O CH ₃ COCH ₃ Methyl ethanoate
Amide		-amide	O II CH ₃ CNH ₂ Ethanamide
Carboxyli anhydride		-oic anhydride	OO CH ₃ COCCH ₃ Ethanoic anhydride
Carboxyli chloride	c acid	-oyl chloride	O II CH ₃ CCI Ethanoyl chloride

3.2 Alkanes and Alkane Isomers

- Alkanes: Compounds with C-C single bonds and C-H bonds only (no functional groups)
- Connecting carbons can lead to large or small molecules
- The formula for an alkane with no rings in it must be C_nH_{2n+2} where the number of C's is n
- Alkanes are saturated with hydrogen (no more can be added
- They are also called **aliphatic compounds**

Alkane Isomers

- CH_4 = methane, C_2H_6 = ethane, C_3H_8 = propane
- The molecular formula of an alkane with more than three carbons can give more than one structure
 - C₄ (butane) = butane and isobutane
 - C₅ (pentane) = pentane, 2-methylbutane, and 2,2dimethylpropane
- Alkanes with C's connected to no more than 2 other C's are straight-chain or normal alkanes
- Alkanes with one or more C's connected to 3 or 4 C's are branched-chain alkanes


Constitutional Isomers

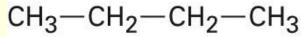

- Isomers that differ in how their atoms are arranged in chains are called **constitutional isomers**
- Compounds other than alkanes can be constitutional isomers of one another
- They must have the same molecular formula to be isomers

Table 3.2	Number of Alkane Isomers	Different carbon skeletons C₄H ₁₀	CH ₃ CH ₃ CHCH ₃	and	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃
Formula	Number of isomers	04110	0 0	unu	
C ₆ H ₁₄	5		2-Methylpropane (isobutane)		Butane
C ₇ H ₁₆	9				
C ₈ H ₁₈	18	Different functional groups	CH ₃ CH ₂ OH	and	CH ₃ OCH ₃
C_9H_{20}	35	C ₂ H ₆ O	Ethanol		Dimethyl ether
C ₁₀ H ₂₂	75				
$C_{15}H_{32}$	4,347	Different position of	NH ₂		
$C_{20}H_{42}$	366,319	functional groups C ₃ H ₉ N	СН ₃ СНСН ₃	and	CH ₃ CH ₂ CH ₂ NH ₂
C ₃₀ H ₆₂	4,111,846,763	© 2007 Thomson Higher Education	Isopropylamine		Propylamine

Condensed Structures of Alkanes

- We can represent an alkane in a brief form or in many types of extended form
- A condensed structure does not show bonds but lists atoms, such as
 - $CH_3CH_2CH_2CH_3$ (butane)
 - CH₃(CH₂)₂CH₃ (butane)

CH₃CH₂CH₂CH₃

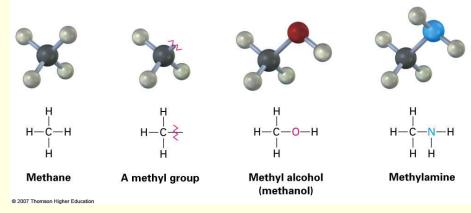

CH₃(CH₂)₂CH₃

Table 5.5	ie 5.5 Names of Straight-Gham Arkanes			
Number of a	arbons (<i>n</i>)	Name	Formula (C _n H _{2n+2})	
1	L	Methane	CH ₄	
2	2	Ethane	C ₂ H ₆	
3	3	Propane	C ₃ H ₈	
4	4	Butane	C ₄ H ₁₀	
5	5	Pentane	C ₅ H ₁₂	
6	5	Hexane	C ₆ H ₁₄	
5	7	Heptane	C ₇ H ₁₆	
8	3	Octane	C ₈ H ₁₈	
ç	9	Nonane	C ₉ H ₂₀	
10	D	Decane	C ₁₀ H ₂₂	
11	1	Undecane	C ₁₁ H ₂₄	
12	2	Dodecane	C ₁₂ H ₂₆	
13	3	Tridecane	C ₁₃ H ₂₈	
20	C	Icosane	C ₂₀ H ₄₂	
30	0	Triacontane	C ₃₀ H ₆₂	

Table 3.3 Names of Straight-Chain Alkanes

3.3 Alkyl Groups

- Alkyl group remove one H from an alkane (a part of a structure)
- General abbreviation "R" (for Radical, an incomplete species or the "rest" of the molecule)
- Name: replace ane ending of alkane with -y/ ending
 - CH₃ is "methyl" (from methane)
 - CH₂CH₃ is "ethyl" from ethane



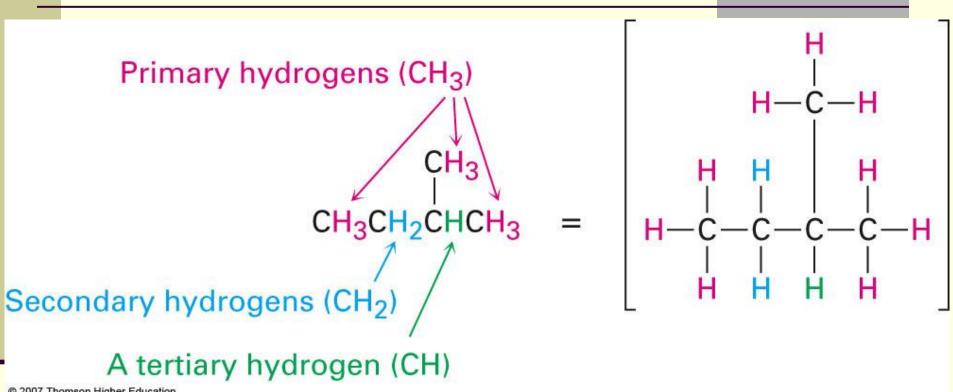
Table 3.4 Some Straight-Chain Alkyl Groups

Alkane	Name	Alkyl group	Name (abbreviation)
CH ₄	Methane	-CH ₃	Methyl (Me)
CH ₃ CH ₃	Ethane	-CH ₂ CH ₃	Ethyl (Et)
CH ₃ CH ₂ CH ₃	Propane	$-CH_2CH_2CH_3$	Propyl (Pr)
CH ₃ CH ₂ CH ₂ CH ₃	Butane	-CH ₂ CH ₂ CH ₂ CH ₃	Butyl (Bu)
CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	Pentane	$-CH_2CH_2CH_2CH_2CH_3$	Pentyl, or amyl

Types of Alkyl groups

- Classified by the connection site (See Figure 3.3)
 - a carbon at the end of a chain (primary alkyl group)
 - a carbon in the middle of a chain (secondary alkyl group)
 - a carbon with three carbons attached to it (tertiary alkyl group)

Primary carbon (1°) is bonded to one other carbon.

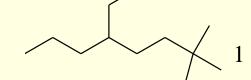

Secondary carbon (2°) is bonded to two other carbons.

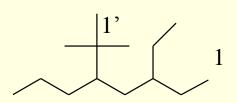
Tertiary carbon (3°) is bonded to three other carbons.

Quaternary carbon (4°) is bonded to four other carbons.

3.4 Naming Alkanes

Compounds are given systematic names by a process that uses


Prefix—Locant—Parent—Suffix


- Follows specific rules
 - Find parent hydrocarbon chain
 - Carbons in that main chain are numbered in sequence
 - Substituents are identified numbered
 - Write compound name is single word
 - Name a complex substituents as though it were a compound itself
- See specific examples in text
- Try ThomsonNow Organic Interactive from p. 90 of your text

Rules for naming Branched Alkanes (or drawing structure from name)

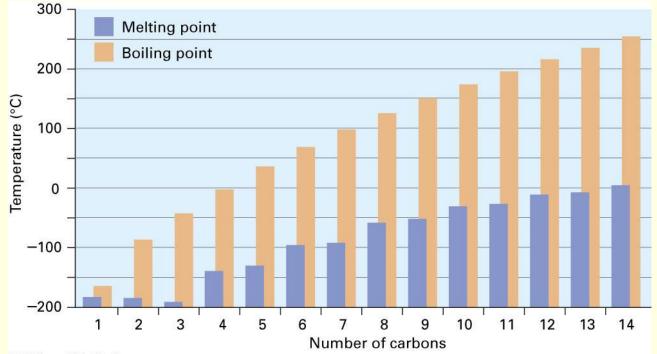
- Find the longest chain and name it as a straight chain alkane
- Name substituents as <u>alkyl</u> groups
- Number the main chain starting from the end closest to a substituent
- Write the name
 - Alphabetize by sub. (di-, tri-count only if part of sub. name)
 - Order #'s from low to high; use smallest possible numbers
 - Capitalize the first letter only
 - Write as one word with commas and hyphens as needed
 - Complex substituents in parentheses

5-Ethyl-2,2-dimethyloctane

5-(1,1-Dimethylethyl)-3-ethyloctane

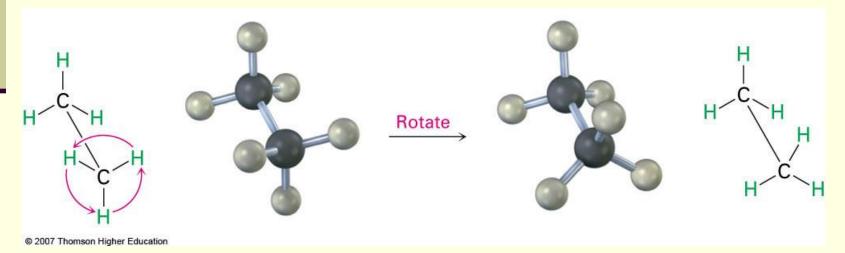
4-ethyl-3,6-dimethyldecane

4-(1-Ethylpropyl)-2,3-dimethylnonane

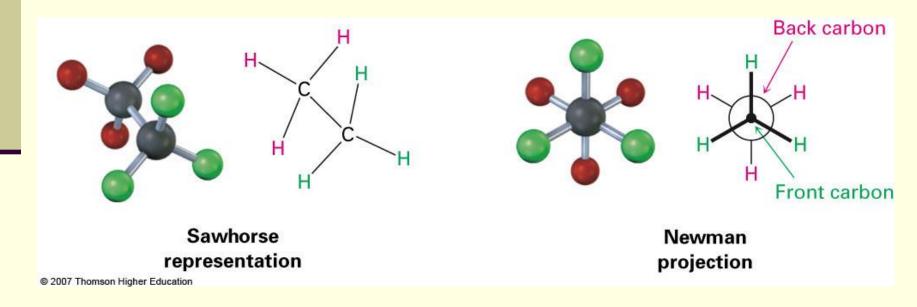

3.5 Properties of Alkanes

- Called paraffins (low affinity compounds) because they do not react as most chemicals
- They will burn in a flame, producing carbon dioxide, water, and heat
- They react with Cl₂ in the presence of light to replace H's with Cl's (not controlled)

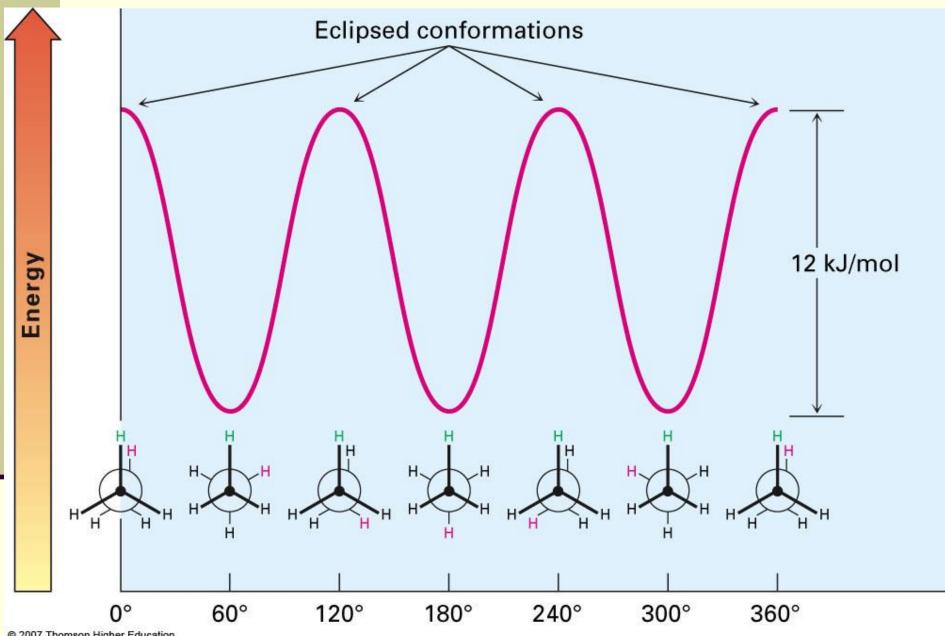
Physical Properties


- Boiling points and melting points increase as size of alkane increases
- Dispersion forces increase as molecule size increases, resulting in higher melting and boiling points

^{© 2007} Thomson Higher Education

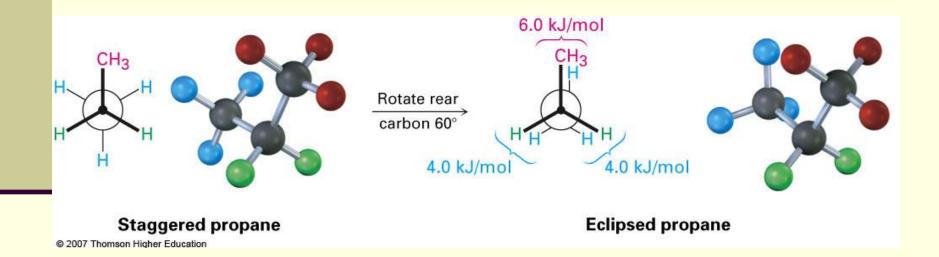

3.6 Conformations of Ethane

- Stereochemistry concerned with the 3-D aspects of molecules
- \bullet sources of the symmetrical symmetrical
- Rotation is possible around C-C bonds in open-chain molecules

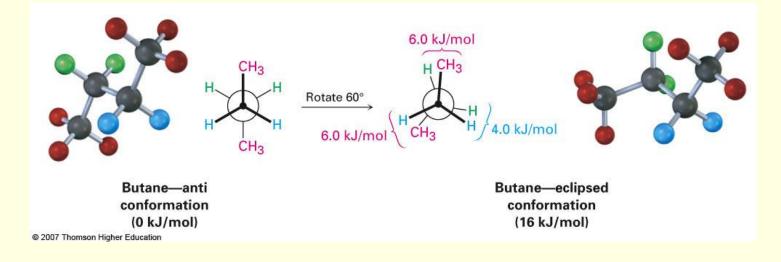

Conformers

 Conformation- Different arrangement of atoms resulting from bond rotation
 Conformations can be represented in 2 ways:

Torsional Strain

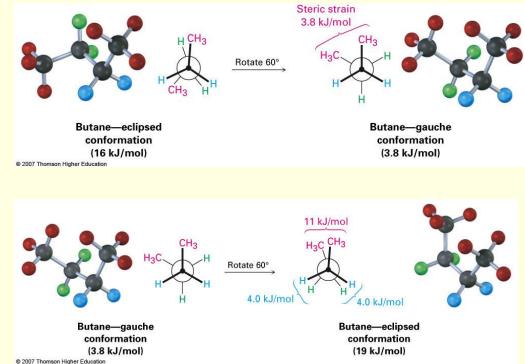

- We do not observe perfectly free rotation
- There is a barrier to rotation, and some conformers are more stable than others
- Staggered- most stable: all 6 C-H bonds are as far away as possible
- Eclipsed- least stable: all 6 C-H bonds are as close as possible to each other

^{© 2007} Thomson Higher Education

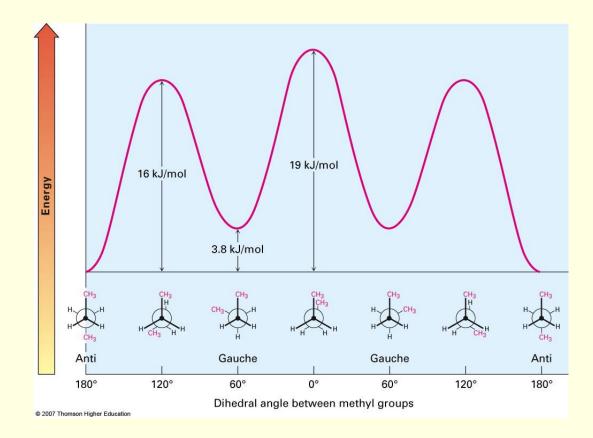

3.7 Conformations of Other Alkanes

The eclipsed conformer of propane has 3 interactions: two ethane-type H-H interactions, and one H-CH₃ interaction

Conformations of Other Alkanes


- Conformational situation is more complex for larger alkanes
- Not all staggered conformations has same energy, and not all eclipsed conformations have same energy

Conformations of Butane


Anti conformation- methyl groups are 180° apart
 Gauche conformation- methyl groups are 60° apart

Which is the most energetically stable?

Steric Strain

Steric strain- repulsive interaction occurring between atoms that are forced closer together than their atomic radii allow

Table 3.5 Energy Costs for Interactions in Alkane Conformers

		Energy cost	
Interaction	Cause	(kJ/mol)	(kcal/mol)
$H \longleftrightarrow H$ eclipsed	Torsional strain	4.0	1.0
$H \leftrightarrow CH_3$ eclipsed	Mostly torsional strain	6.0	1.4
$CH_3 \leftrightarrow CH_3$ eclipsed	Torsional and steric strain	11	2.6
$CH_3 \leftrightarrow CH_3$ gauche	Steric strain	3.8	0.9